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between 2500 and 400° have been measured; and the following equations 
expressing them in millimeters of mercury have been derived: 

For NaH: log18£ = — 5700/T + 2.5 log10T + 3.956. 
For KH log10£ = — 5850/T + 2.6 logl0T + 3.895. 

The vapor pressure equations for liquid sodium and potassium have 
been calculated from the following data: (1) the boiling points of these 
substances; (2) their heats of vaporization, derived from Trouton's rule 
(assuming the same constant as for mercury); and (3) the heat capacities 
of the liquids and the vapor. These equations are 

For Na: log p = — 6200/T — 1.35 log T + 12.4. 
For K: log p = — 6000/T — 0.40 log T — 0.0008T + 10.73. 

The heat of reaction at ordinary temperatures has been calculated 
from the measurements, and found to be 13,860 calories per formula-
weight of sodium hydride (NaH) and 14,240 calories per formula-weight 
of potassium hydride (KH). 
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As is well known, the effect of pressure acting on both the solid and 
liquid phase of a single substance is to raise or lower its melting point 
according as the process of melting is accompanied by an increase or a 
decrease of volume respectively, the latter being the exceptional • case. 
But when pressure acts only on the solid phase, but not—or not to the 
same extent—on the liquid phase, the melting point is always lowered 
and by an amount which is many times as great as the corresponding 
change produced by the same pressure acting on both the liquid and the 
solid phase. For example, the melting point of ice is lowered by 0.0075 ° 
per atmosphere of equal pressure, but by about 12 times as much, or 
0.09° per atmosphere, when the pressure acts only on the ice.1 The 
latter type of pressure we shall for convenience in what follows designate 
by the term "unequal pressure." 

A study of the work of Spring and others rendered evident a parallelism 
between the melting point of a substance and the ease with which it will, 
when subjected to (non-uniform) compression, flow or weld into a more 
or less solid block; namely, that the higher the melting point of the ma
terial, the less readily does it flow, or weld together, under compression. 

1 Cf. J. H. Poynting, Phil. Mag., [5] 12, 32 (1881); Ostwald's "Lehrbuch der Allge-
meinen Chemie," 2 Aufl., Vol. 2, II, pp. 374-9; or Roozeboom's "Heterogene Gleichge-
wichte," Vol. 1, pp. 213-7. 
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From this it is obvious that, if it be assumed that the process of flow is 
a manifestation of a real melting produced by the compression, the pres
sure must be unequal in character; that is, the pressure acting on the solid 
must be greater than that on the liquid phase. For, when the same 
pressure acts on both phases, the melting point of practically all substances 
is raised, and not lowered, as, on this explanation of the phenomenon, 
we assume it to be. I t seemed of interest, therefore, to calculate the 
effect of unequal pressure in lowering the melting point of metals, to 
compute the amount of such pressure required to cause the metal to melt 
at or about the ordinary temperature, and to investigate if the pressure 
computed in this way can be correlated with any of the mechanical, or 
other, properties of the metals. 

The equation made use of in calculating the effect of unequal pressure 
on the melting point is derived most readily in the way employed by G. 
N. Lewis in a parallel case—the calculation of the variation of osmotic 
pressure with temperature.1 

Let A be the activity2 of the substance in the solid phase, and A' the 
activity in the liquid phase. Now, if the pressure on the solid phase 
alone is increased by dP, then the temperature of equilibrium will be 
changed by an amount dT. Since both phases are initially in equilibrium, 
the activity of the solid (A) and that of the liquid (A') must be equal; 
moreover, they must again be equal when equilibrium is re-established. 
Hence A=A', and dA = dA', or dlnA = dbiA'. 

Now, the change in InA is due to temperature change alone; the change 
in InA' is due to change in temperature and change in pressure; that is, 

HnA - ( ^ ) dT 

and 

Equating the right hand members of these equations, we have 

Substituting for the partial differentials their values from the fundamental 
thermodynamic equations,3 and combining the left hand terms, gives 

1 T H I S JOURNAL, 30, 680 (1908). I am much indebted to Prof. Lewis for bring
ing to my attention this method, which is so much more succinct than the mode of 
derivation which I had at first made use of. 

' For a definition and discussion of the term "activity," see Lewis, "Outlines of a 
New System of Thermodynamic Chemistry," Proc. Am. Acad., 43, 259 (1907); Z. 
physik. Chem., 61, 129 (1907). 

8 Lewis, equations V and VIII1 Proc. Am. Acad., 43, 266, 267 (1907); Z. physik. 
Chem., 6 i , 137, 138 (1908). 
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LdT _ VdP 
RT2 ~ RT 

or 
dT ^VT (I) 
dP~ L 

where V is the molal volume of the solid phase, T its melting point on 
the absolute scale (both phases under the same pressure), and L its 
molal heat of fusion. The quantities V and T are always positive, but 
L (as here used) is always negative; hence application of excess pressure 
on the solid phase always lowers the melting point.1 

This differential equation is rigorously correct; but in order to inte
grate it, we must know how V and L change with the temperature and 
with the pressure. The variation of V is determined by the coefficients 
of expansion and of compressibility, which are known for comparatively 
few substances. With regard to the other factors, our knowledge of L 
at the ordinary melting point under atmospheric pressure is as yet ex
tremely unsatisfactory in character and limited in scope, while our ig
norance of its variation with either temperature or pressure is practically 
complete. However, in the case of the metals at least, this difficulty 
is not so serious, as is shown by the following considerations: 

The variation of melting point with pressure, acting equally on both 
phases, for all the metals which have so far been investigated, has been 
found to be practically linear within the error of experiment.3 I t is a neces
sary consequence of this linearity that with increasing pressure the relation 
between L and (V—V) (V is the molal volume of the liquid phase) 
must be linear, or, in the limiting case, remain practically constant. I t 
is, therefore, very plausible that we are justified in assuming that the 
variation of L with V is linear. Integrating equation I on this basis, 
between the limits T1 (the ordinary melting point at i atm. pressure, 

1 This lowering is, of course, relative to the melting point when tha t pressure 
which now acts on the liquid alone (the solid being subject to pressure in excess of this) 
acts on both solid and liquid. In other terms: if the melting point is denoted by T 
with subscripts and superscripts to represent the pressure acting on the solid phase 
and liquid phase respectively, then Tp + ^p is always lower than Tp, the magnitude 
of this lowering being dependent on the excess of pressure A P acting on the solid. 
Now Tp may be higher, or lower, than T1

1 (the ordinary melting point a t atmospheric 
pressure), according as the volume change on melting is positive or negative; con
sequently, in some cases Tp + ^p may be higher than T1

1, but this will be so only when 
A P is small compared to P , a contingency which, we believe, does not affect the 
main considerations advanced in this paper. 

2 Tammann, Z. anorg. Chem., 40, 54 (1904) with K and Na; Johnston and Adams, 
Am. J. Sci., 31, 501 (1911); Z. anorg. Chem., 72, 11 (1911), with Sn, Bi, Cd, Pb a t 
pressures up to 2000 atm.; Bridgman, Proc. Am. Acad., 47, 347 (1911), with Hg up 
to still higher pressures. 
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expressed on the absolute scale) and a given temperature 6, we obtain 
the equation 

^ = T111T1- (II) 

Instead of the molal values we may substitute the heat of fusion (QJ 
per gram of substance, and the density (D1) of the solid, at the ordinary 
melting point1 (T1); making the necessary transformations, we obtain 
finally the equation 

? = 9 5 - i 0 i A l o g y , (HI) 

which enables to calculate the melting pressure (9, expressed in atmos
pheres) corresponding to the temperature 0; that is, 9 is the pressure 
required to cause the substance to melt at the absolute temperature 0. 

This formula has been applied to the calculation of the excess pressure 
(acting on the solid only) required to cause the metal to melt at 2 7 ° (that 
is, 0 = 300°) in the case of all the metals2 for which values of Q are given 
in Landolt-BOrnstein-Meyerhoffer Tabellen (2 Aufl., p. 470). For some 
metals more than one value is given, but it is at present impracticable 
to determin which are most reliable; for this reason, the mean value 
was adopted in all such cases. For the same reason, the general mean 
value of the density, as given in the tables (pp. 224-9), was taken. The 
melting points are those now generally adopted. 

The data and results are brought together in Table I, in which the 
metals are arranged in the order of increasing values of the melting pres
sure calculated in this way from equation III. I t was conjectured that 
this order might bear some relation to that obtained when these metals 
are arranged with reference to the relative values of their elastic con
stants and mechanical properties. 

1 In the computations which follow, the value of the density a t the ordinary tem
perature was used. This was done because of the uncertainty in the appropriate 
correction; moreover, our present knowledge of D a t the ordinary temperature is so 
unsatisfactory that it would be altogether futile to apply any such correction, especially 
as the accuracy of the present values of Q is so doubtful. 

2 Excepting iron, on account of the uncertainty of what "iron" is, and the dis
parity of the recorded values. The value given for nickel in Landolt-Bornstein-
Meyerhoffer Tabellen (p. 470) as a heat of fusion (taken from Pionchon, Ann. chim. 
phys., [6] 11, 106 (1887)) was found, on reference to the original, to be a heat of trans
formation (occurring somewhere between 230° and 400 °); consequently nickel could 
not be included. (Similarly, Pionchon's values for iron given in L.-B.-M. (p. 470) 
are heats of transformation.) Mercury and gallium are omitted, since they are liquid 
a t ordinary temperatures. The value of Q for aluminium is somewhat doubtful; it 
was calculated from the "total hea t" (as given in L.-B.-M.) by means of the specific 
heat of aluminium (0.30) as given by Bontschew (L.-B.-M., p. 383). No alloys could 
be included owing to lack of the necessary data; in any case the formula is applicable 
only to those alloys which melt completely a t a definit temperature. 
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TABLE I .—LOWERING OP MELTING POINT OF METALS EFFECTED BY ONE ATM. U N 

EQUAL PRESSURE, TOGETHER WITH THE COMPUTED MELTING PRESSURES AT 

ORDINARY TEMPERATURES. 

Meta l . 

K 
Na 
Pb 
Sn 
Bi 
Cd 
Al 
Zn 
Ag 
Cu 
Pd 
P t 

Melt i 

I 

62 

97 
3 2 7 
2 3 2 

2 7 0 

3 2 1 

658 
4 1 9 

9 6 0 

1 0 8 3 

I 5 5 0 

1755 

ng p o i n t . 

T1 

335 
370 
6 0 0 

505 
543 
594 
93i 
6 9 2 

1 2 3 3 

1 3 5 6 

1 8 2 3 

2 0 2 8 

H e a t of 
fusion. 

Q 

1 5 - 7 

3i -7 
5-4 

1 4 . 1 

1 2 . 5 

1 3 - 7 
4 2 . 0 

2 8 . 0 

2 3 . 0 

4 3 - 0 

36.3 
2 7 . 2 

D e n s i t y . 
D 

O . 8 7 

O . 9 8 

" • 3 7 
7.29 
9.80 
8.64 
2 . 6 0 

7 - 1 
1 0 . 5 0 

8-93 
1 1 . 4 

2 1 - 5 

A T 1
1 

0-59 
O . 2 9 

O . 2 4 

O . I 2 

O . I I 

O . I 2 

0 . 2 1 

0 . 0 8 4 

O . I 2 

0 . 0 8 6 

O . I I 

0 . 0 8 4 

Vt,2 

64 
266 

1 7 6 0 

2 2 0 0 

3 0 0 0 

3 3 0 0 

5 1 0 0 

6 9 0 0 

1 4 0 0 0 

2 4 0 0 0 

3 1 0 0 0 

4 6 0 0 0 

The most obvious mechanical property with which to compare the 
series of <p values is the flow pressure.3 This was determined for a series 
of metals, by Tammann, Verigin and Levkojeff ;4 later, and independently, 
by Kumakov and Zhemchuzhny.5 Arranged in the order of decreasing 
ease of flow, the metals follow in the order K, Na, Pb, Tl, Sn, Bi, Cd, Zn, 
Sb, a sequence which is identical with that deduced thermodynamically 
and presented in Table I. But not only is the sequence of 9 values 
identical with that of the flow pressure; it is practically identical with 
the sequence obtained when the metals are arranged in the order of any 
of their elastic properties for which measurements have been made. 
This is shown by Table II, in which have been brought together all the 

1 This column, which represents the melting point depression produced by 1 atm. 
excess pressure acting on the solid, is added merely to give an idea of the magnitude 
of this quantity. The values given are calculated from the formula A T1 = 7^/41.30 
QD which is easily derived from equation I. 

3 I t should be observed that the values of <p given in the preliminary note (J. 
Washington Acad. Set., 1, 260 (1911)) were calculated by a formula which holds strictly 
only so long as ip, or the difference between T and 6, is small. The more accurate 
mode of calculation from equation I I I of the present paper leads to somewhat higher 
numerical values of <p, but does not alter the order of the <p values; so tha t this change 
does not affect the argument. 

5 The amount of compression required to cause a material to flow is characteristic 
of the material under specified conditions; but at constant temperature it varies, as 
is obvious, with the size of the aperture through which the flow takes place; probably 
also it depends upon the shape of the aperture and upon other subsidiary factors. 
Hence, determinations of flow pressures are comparable only when they have all been 
made in the same apparatus and in the same way. This condition is fulfilled by the 
experimental observations cited, which lead to reliable relative values of the flow 
pressure for a series of metals. 

4 Ann. Physik, 10, 649 (1903). 
8 Z. anorg. Chem., 64, 174 (1909). 
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data available on the elastic properties, namely, compressibility, hard
ness, tensile strength, elastic limit, elastic modulus and modulus of rig
idity. 

TABLE I I . — R E L A T I V E VALUES 1 OP THE ELASTIC CONSTANTS OF METALS. 

Metals 
in order 

as in 
Table I. 

K 
Na 
Pb 
Sn 
Bi 
Cd 
Al 
Zn 
Ag 
Cu 
Pd 
P t 

Compres
sibility. 

31-5 
15-4 

2 . 2 

1 -7 
2 . 8 

i - 9 

i - 3 

*-5 
0 . 8 4 

°-54 
0 . 3 8 

0 . 2 1 

Hard
ness. 
(M. 

°-5 
0 . 4 

1 - 5 
1 . 8 

2 - 5 
2 .O 

2 . 9 

2 - 5 
2 . 7 

3 - 0 

4-8 

4-3 

Tensile 
strength. 

W. (d). 

2 . O 

2 . I 

1 3 
22 

2 5 

2 9 

2 1 

36 

48 

2 7 2 

3 1 6 

(«> 

O . 

4 

I O 

12 

12 

2 7 

2 6 

Elastic limit. 

Lower. 

3 25 

34 

2 8 

2 8 3 

1 2 5 

2 0 3 

Upper. 

102 

55 

1 0 9 

6 0 0 

7 7 0 

2780 

Elastic 
(Young's) 
modulus. 

(Q). 

17 

34 
3 2 

7 1 
7 0 

78 
7 0 

1 0 8 

1 0 3 

1 6 1 

Rigidity 
modulus. 

(h). («)'. 

5 
1 6 

12 

17 
2 9 

3 1 

39 
4 2 

46 
52 

0 . 8 0 

1.50 

2 . 3 1 

2-55 

2.67 

4.37 

6.46 

From this table it is evident that, as the value of <p increases, the com
pressibility decreases, and the values of the other elastic properties in
crease steadily. The exceptions to this statement are very few as re
gards any one property, and vary irregularly as we pass from one property 
to another; in other words, there are no systematic divergences between 
the sequence of the metals as derived from the thermodynamic relation
ship discussed in this paper, and that obtained when they are arranged 
progressively with reference to any one of their elastic properties. The 
slight divergences are no greater than one might expect from the uncertain 
character of the thermal data, on the one hand, and of the elastic constants 
on the other. Indeed, excellent agreement could have been obtained by 
selecting for each metal an appropriate value from the somewhat discor
dant data for the elastic constants in the Landolt-Bornstein-Meyerhoffer 
Tabellen; but it was deemed more commendable to take a general mean 
of all the values there given, as it was impracticable to determin just 

1 I t is to be noted that the values given in the table are relative only, and are not 
always expressed in the same units (e. g., columns c and d, e and /, h and i). 

(a) As given by Richards and collaborators, T H I S JOURNAL, 31, 156 (1909). 
(b) According to Rydberg, L.-B.-M. Tabellen, p . 57. 
(c) L.-B.-M. Tabellen, p . 53. 
(d) Wertheim (1848) quoted by Faust and Tammann, Z. physik. Chem., 75, 118 

(1911). 
(e) L.-B.-M. Tabellen, p . 53. 
(/) As determined by Faust and Tammann, loc. cit. 
(g and h) General mean of the (sometimes very discordant) values given in L.-B.-M. 

Tabellen, pp. 43-45. 
(i) Horton, Trans. Roy. Soc. London, (A) 204 (1905). 
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which values represent most accurately the true elastic constants of the 
various metals. 

The purely elastic properties of metals have often been collated and 
compared, and it has been surmized repeatedly that these properties 
are some function of the melting point of the metal.1 But, so far as the 
writer is aware, no one has advanced further than a statement of the 
general parallelism between elastic properties and melting point—a state
ment to which there are some notable exceptions (lead, aluminum (see 
Table II), also a large number of alloys), which seriously limited its scope 
and usefulness. When arranged with reference to the function of the 
melting point deduced in this paper, the above two metals cease to be 
exceptions.2 

One other piece of presumptive evidence in favor of this point of view 
may also be mentioned, namely, a comparison of the values of <p with 
the flow pressures of tin as determined by E. Janecke3 at a series of tem
peratures. In default of knowledge of the variation of Q with tempera
tures and pressure, we may justifiably consider Q and D as constants. For 
any one metal therefore, equation III may be written, since T1 is also 
constant, 

9 = K1 - K2 log 6 (IV) 

where K1 and K2 are constants, the values of which depend upon Q, D, and 
T1. The graph of equation IV, which gives the variation of <p with 8, 
is very similar to the curve plotted from Janecke's results; with increasing 
temperature both diminish at about the same decreasing rate. 

From the above, then, it appears to be true that the mechanical proper
ties of metals are correlated with the amount of pressure—assumed to 
act on the solid alone—requisit to cause the metal to melt at or near the 
ordinary temperature. This pressure in turn depends upon the melting 
point, the density, and the heat of melting of the metal. The first two 
of these quantities are known to be periodic functions of the atomic 
weight, and there is every reason to believe that the heat of melting, and 
therefore also cp, is. Therefore, reasoning from the observed parallelism, 
we should expect some, or all, of the elastic properties to be periodic 
functions. So far, thorough measurements have been made only on the 
compressibility, which, according to Richards, shows marked periodicity. 

The remarkable concordance shown in the above table, which can 
1 No references are given to this, because the author found it impracticable to 

examine all of the voluminous literature in order to determin with whom each par
ticular suggestion originated. Some of the points are discussed by Kurnakov and 
Zhemchuzhny (Z. anorg. Chem., 6o, i (1908); 64, 149 (1909)). 

2 The formula I I I could not be applied to alloys owing to lack of the necessary 
data. In any case the formula is applicable presumably only to such alloys as 
melt completely a t a constant and definit temperature. 

8 Metallurgie, 8, 68-72 (1911). 
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hardly be due to coincidence, suggests that the "flow" of metals—or 
indeed, every permanent distortion of a crystallin solid—is due to an 
actual fusion (with subsequent resolidification) of the crystals. The 
validity of this view is supported by a large number of well known facts, 
e. g., that a metal requires progressively less effort to cause it to weld—or 
to forge it—the higher its temperature. Moreover it is corroborated 
by a large number of observations, which demonstrate the existence of 
important differences between metal which has "flowed" or has been 
subjected to deformation of any kind and the same metal in the annealed 
condition. 

All the available evidence1 goes to show that there is: (a) a difference 
in the energy content of the strained and unstrained metal, which is 
manifested in a difference between the two forms, (i) in their electro
lytic potential when immersed in a solution, (2) in their thermoelectric 
power, (3) in their heat of solution; (6) a difference in structure mani
fested in differences in (1) microscopic appearance, (2) mechanical proper
ties—hardness, tensile strength, etc., '(3) density,2 (4) conductivity for 
heat or electricity, etc. For any one metal these differences vanish about 
a single temperature common to all,—thus for silver at about 2600—that 
is, at the temperature at which annealing proceeds with appreciable 
rapidity. 

According to Beilby,3 the process of deformation is always accompanied 
by a partial transformation of the metal to an "amorphous"4 form, which 
acts as a cementing material for the untransformed grains. According 
to Faust and Tammann,5 on the other hand, the change of properties 
on deformation is parallel to the production of smaller crystallites. 
Whichever be the correct interpretation—if indeed these views are mutu
ally exclusive6—the fact remains that deformation of a metal is accom
panied by changes in its properties. These changes are such that they 
would be rather difficult to account for reasonably, except on the very 
simple supposition that an actual melting has occurred. 

Against this view it might be urged that the pressures required to 
cause the metals to melt about the ordinary temperature are so great 
that they are unlikely to occur in practice. But this objection loses 

1 Cf. G. T. Beilby, Phil. Mag., [6] 8, 258-76 (1904), who discusses the evidence 
in detail. 

2 Kahlbaum, Roth and Siedler, Z. anorg. Chem., 29, 197 (1902); Kahlbaum and 
Sturm, Ibid., 46, 217 (1905); Spring, / . chim. phys., i , 593 (1903); Rec. trav. chim., 
23, i (1904). This subject is fully discussed by Johnston and Adams, T H I S JOURNAL, 
34, 563 ( 1 9 " ) . 

a hoc. cit. 
4 Beilby here uses the term "amorphous" to denote "a heterogeneous assemblage 

of molecules." 
* Z. physik. Chem., 75, 108-26 (1911). 
• Cf. postea, p . 800. 



796 JOHN JOHNSTON. 

weight when it is remembered that the brunt of any strain, to which a 
crystallin mass is subjected, is borne by a small number of crystals at 
any one time. When these crystals give way, others take up the strain, 
and so on. In this way, relatively very small total forces could produce 
very considerable pressures locally, pressures sufficient to cause melting 
at those points. This process would be like the method of tearing a 
pack of cards, which consists in holding them in such a way that the force 
comes on only one card at a time. 

This point of view accounts plausibly for other aspects of the behavior 
of metals—for instance, the "hardening" of metals and the increase of 
strength following upon deformation; but before proceeding to discuss 
this, it seems advisable to outline a mechanical picture of the probable 
mode of action of unequal pressure upon a metal. 

Poynting1 and also Le Chatelier2 have used this conception of unequal 
pressure to account for regelation—the consolidation of a mass of loose 
snow at o° into a block of solid ice. The pressure, due to the superin
cumbent material, lowers the melting point at the surface of contact of 
adjacent grains by an amount A*. The water formed flows out into the 
interstices of the snow grains, where it is at a pressure of i atm. but at 
a temperature of —A<, and is in contact with ice at o°; consequently 
it freezes again. This process continues until all the interstices are filled 
up; that is, until a solid block of ice is formed. 

Considerations analogous in every respect are applicable to systems 
of solid grains in contact with water or an aqueous solution. In such 
cases pressure acting only on the solid increases its solubility, and renders 
the solutions supersaturated as soon as they are out of contact with the 
compressed solid. Le Chatelier accounts in this way for the consoli
dation of natural beds of rock-salt, gypsum, calcium carbonate, etc.; 
and he showed by direct experiment that consolidation could be pro
duced in this way. 

The behavior of metals under the action of a differential compression 
we conceive to be identical with that pictured above for ice. Namely, 
that metal melts wherever the pressure reaches the appropriate value, 
flows into the interstices where the pressure is smaller and solidifies 
again, with the formation in general of very small crystals, by reason of 
the exceedingly rapid rate of recrystallization. 

The effects of unequal pressure are analogous to those produced by a 
shearing stress; or perhaps one should say rather that the effects of a 
shearing stress are those produced by what we have termed unequal 
pressure. Now a longitudinal tensile stress can always be resolved into 
a uniform dilatation and a shearing stress, just as a longitudinal compres-

1 Phil. Mag., [5] 12, 32 (1881). 
3 Z. physik. Chem., 9, 338 (1892). 
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sive stress can be regarded as composed of a uniform compression and a 
shearing stress. Hence the conception of unequal pressure, and its effect 
on the melting point of a crystallin substance, is equally applicable to 
all permanent deformations, whether produced by compression or by 
tension. 

When pictured in the way outlined in the above paragraphs, it is ob
vious that one might expect a parallelism between the cp values and cer
tain of the mechanical properties: in all cases, namely, in which the prop
erty in question—for instance, tensile strength or flow pressure—implies 
in any way a permanent deformation of the material, the latter being 
presumed always to be a manifestation or a real melting produced where-
ever the stress reaches the appropriate value. In regard to the purely 
elastic properties—those, e. g., compressibility, which imply no permanent 
change in the material—the parallelism can hardly be ascribed to a 
melting; but it may very well be an expression of the fact that the elastic 
properties and the 9 values as calculated in this paper are all functions 
of some one determining factor.1 But even if this is so, it in no wise 
detracts from the plausibility of the view that deformation is conditioned 
by an actual melting; for there is no apparent necessary connection be
tween the modes of action of stresses which produce deformation and of 
those which do not. 

The possibility of accounting in this way for the flow of solids was 
considered by Tammann,2 but summarily rejected by him on what appear 
to the writer to be insufficient grounds. In the first place he doubts the 
thermodynamic admissibility of the derivation of the formula for the 
lowering of equilibrium temperature by unequal pressure. In the second 
place, in his experimental work he was unable to detect any discontinuity 
in the rate of flow at the pressure indicated by the formula as the melting 
pressure at that particular temperature. To reason from this lack of 
discontinuity that the effect of unequal pressure upon the melting point 
is illusory might be justifiable if Tammann had been dealing with a single 
crystal; but dealing as he was with a conglomerate of crystals, flow began 
whenever the pressure on any one of them exceeded the melting pressure 
under the particular conditions. Indeed the behavior of ice in this re
spect is precisely similar to that of the metals—a fact specifically noted 
by Tammann himself—the only difference being that the absolute values 
of the pressure are lower than for the common metals. 

Tammann concludes:3 "From the work on the velocity of flow of crystal
lin substances it follows that the flow is not conditioned by a previous 

1 This question is treated later, p . 801. 
2 Ann. Physih, [4] 7, 198 (1902); Krystallisieren und Schmelzen (Leipzig, 1903), 

pp. 173-81. 
3 hoc. cit. 
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melting, "but that the plasticity, the reciprocal of the viscosity, is a property 
characteristic of the substance." In order to account for the fact that the 
velocity of flow, and hence the "plasticity," of ice increases very consider
ably with the pressure, it must be assumed that its viscosity diminishes 
greatly with pressure. This assumption may hold, for water at low 
temperatures and low pressures is an exception to the general rule that 
the viscosity of liquids is increased by pressure;1 to the writer neverthe
less it seems less forced to account for the flow by the aid of the argument 
advanced in this paper: namely, that flow is the result of a partial 
melting. On this basis we can readily see why increased pressure, which 
causes more ice to melt and hence increases the amount of water present, 
should increase the plasticity. Moreover, so far as the writer has been 
able to ascertain, this explanation conflicts with none of the recorded 
observations on the flow either of ice or of any other substance. Indeed 
it receives direct confirmation from some recently published work of Hess 
on the plasticity of ice;2 he found, as Tammann previously had also ob
served, that at a given temperature a considerable movement of the 
plunger takes place under a pressure much lower than that deduced 
thermodynamically (on the assumption that the pressure acts equally on 
both the ice and the water produced by the melting), and presents indis
putable evidence that the ice in these circumstances had actually melted. 

The mode of action outlined in this paper, besides accounting plausibly 
for the magnitude of some of the mechanical properties of metals, can 
also be adduced to explain observations on the structure of metal which 
has "flowed," or has been subjected to deformation of any kind. The 
process of "flow," or of deformation, of a metal is always accompanied, 
as we have seen, by a number of changes, among others by a "hardening" 
of the metal; this term is used to denote an increased resistance to stress, 
and is in one sense unfortunately chosen, for Faust and Tammann3 have 
shown that in some cases the "hardness," as measured by the sclerometer, 
is not affected by the process of "hardening." Faust and Tammann, 
by microscopic observation of the specimens, were able to determin 
with a precision of about i% the pressure or tension required to produce 
the first permanent deformation of a number of metals; and found that 
this lower elastic limit is the same for pressure as for tension. Further 
slow increase of pressure above the lower elastic limit causes this limit 
to recede to higher pressures; until finally an upper elastic limit, the 
flow pressure, is reached. This again shows that increase of pressure 
produces an increased rigidity of the metal; which is in accordance with 
the idea, first enunciated by Beilby, that the change in properties of 

1 R. Cohen, Ann. Physik, 45, 666 (1892); Hauser, Ibid., 5, 597 (1901). 
3 Ibid., 36, 449-93 (1911)-
3 Z. physik. Chem., 75, 118 (1911). 
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metals on hammering, rolling, etc., is a direct consequence of the de
formation which occurs during the process. 

Now these facts accord well with the argument of the present paper; 
for, exactly as in the case of the consolidation of loose snow to a block 
of ice, as soon as the stress reaches an appropriate value (the lower elastic 
limit), melting and flow into the interstitial spaces take place, with im
mediately subsequent recrystallization; this process continues until this 
flow is no longer possible (the upper elastic limit), whereupon increased 
stress produces rupture of the material. Now, the actual process of 
flow diminishes the volume of the spaces into which flow is possible, and 
to this extent diminishes the inequality of pressure acting on liquid and 
solid; hence it requires progressively higher pressures absolutely (though 
at the same temperature the same excess of pressure on the solid) to 
produce flow; in other words, the rigidity of the material is increased. 

A phenomenon analogous in every respect to that observed by Faust 
and Tammann has been recorded by Bridgman1 in some very recent 
work on the collapse of thick walled cylinders under high hydrostatic 
pressure. Bridgman found, namely, that with every successive appli
cation of pressure, yield is not resumed until the previous pressure maxi
mum has been reached or exceeded; this behavior is just what we should 
expect if flow is conditioned by a true melting. 

I t is important to observe, in passing, that uniform (hydrostatic) 
pressure is without permanent effect on the properties of metals. Thus 
Faust and Tammann found that the elastic limit of metal which had been 
subjected to high hydrostatic pressure remains unchanged; while, as 
regards the physical properties (density, etc.) it is generally recognized 
that the only effect of hydrostatic pressure is a temporary change in these 
properties, which vanishes again whenever the pressure is removed. In 
all discussions of the effect of pressure, therefore, it is essential that we 
distinguish carefully between uniform and non-uniform compression, 
since their effects are so dissimilar. 

I t is a well known fact that the resistance to flow of eutectics (which 
are always fine grained) is always greater than that of their components;2 

1 Physic. Rev., 34, 1 (1912). 
2 This was demonstrated conclusively by Kurnakov and Zhemzhuzhny [Z. anorg. 

Chem., 60, i (1908); 64, 149 (1909)), who present results—in part from the literature, 
in part original—for a large number of alloys (and also for some pairs of organic sub
stances) which demonstrate this fact. I t has been further confirmed by Tammann, 
who recently (Nachr. Ges. Wiss. Gottingen, 1911, 181) described experiments with a 
few alloys, carried out in quite a different way, from which he draws the conclusions 
tha t this increased strength is a direct consequence of the fact t ha t the alloys are finer 
grained than their components (but offers no explanation as to why a fine grained 
conglomerate should be stronger than one composed of coarser particles); further tha t 
the increased strength of metals which have been chilled is a direct consequence of the 
decreased size of the grains produced by rapid cooling of the melt. 
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further, that the varieties of steel possessing the greatest tensile strength 
(e. g., vanadium steels) are very fine grained. From the standpoint 
adopted in this paper one might reason that such metals are strong because 
they are fine grained; hence, if we wish to make a steel of high tensile 
strength, we should endeavor to obtain a very fine grained structure, 
producing this by whatever means (addition of foreign material, heat 
treatment or mechanical treatment) may be found suitable for this pur
pose. 

I t was noted above that the deformation of metals is accompanied by 
the appearance of an "amorphous" phase, according to Beilby; by the 
production of smaller crystallites, according to Faust and Tammann. 
Neither author speaks definitly of the mode in which the change takes 
place, nor do they, as far as one can judge, consider it as a manifestation 
of real melting, with immediately subsequent resolidification. When 
looked at in this way the divergence between their points of view disap
pears. For, as is well known, the size attained by a crystal depends, ceteris 
paribus, on its rate of formation; so that Beilby, with presumably a rela
tively rapid rate of recrystallization, obtained in his flowed metal crys
tals so small that the metal was apparently "amorphous"; Faust and 
Tammann, on the other hand, using a totally different method in which 
the rate of recrystallization was presumably not so great, obtained rela
tively larger crystal particles. 

A point worth mentioning in this connection is this, that the appear
ance of the cut and polished surface of a metal is not necessarily an 
altogether fair criterion of the structure of the massive metal. For, as 
Beilby has demonstrated conclusively, the process of polishing (and 
obviously, of cutting also) is the result of flow; while in accordance with 
the viewpoint presented in this paper, flow is the result of a partial melt
ing. Therefore, it is a safe assertion that between the apparent structure 
of the polished surface and the actual structure of the massive metal, 
there must always be some differences, which may be so large that ex
amination of the surface only would lead to totally misleading conclusions 
with regard to the structure of the massive metal. 

Kurnakov and Zhemzhuzhny1 made parallel measurements of the 
electrical conductivity and flow pressure of series of binary alloys, and 
found that for given binary systems minimum conductivity and maximum 
flow pressure occur at the same composition. This exemplifies the 
general rule that the conductivity of an alloy is less than that of its com
ponent metals. Moreover the conductivity of a metal generally de
creases when the metal undergoes deformation (e. g., drawing to wire, 
hammering, or rolling). Now if we interpret these facts with the aid of 
the idea that the specific conductivity of a given material diminishes 

1 Loc. cit. 
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progressively, other things being equal, with the size of the component 
particles—an idea which is substantially correct for powdered metals— 
we find them to be in complete harmony with the conclusion reached on 
other grounds: namely, that the size of grain of alloys or of metal which 
has been deformed is less than that of the pure annealed metals. 

Summary and Conclusion. 
In the foregoing pages we have discussed the idea that the "flow," or 

permanent distortion, of metals is conditioned by a real melting, not of 
the whole mass of metal at any one instant, but of successive groups 
of particles (namely, those on which the brunt of the strain momentarily 
falls); and have shown how this idea serves to correlate some properties 
of metals which at first sight would appear to bear no relation to each 
other. I t leads, namely, to the fact that there is a parallelism between 
all the elastic properties of metals for which quantitative measurements 
have been made and the pressure—assumed to act on the solid phase, 
but not, or not to the same extent, on the liquid phase—which is required 
to lower the melting point to ordinary temperature. This pressure is 
a function of the melting point, latent heat of melting, and density at the 
melting point, of the metal; hence, if these quantities are known for any 
substance, we can predict the relative order of magnitude of any of its 
properties which imply deformation of the material. 

The same mode of reasoning is equally valid for any crystallin substance, 
and could be applied to all salts (including silicates and other geologically 
important substances) if the necessary data were available. At the 
present time, values of the latent heat of melting are few and far between, 
so that no general discussion of this part of the subject is practicable now. 

The equation discussed in this paper cannot be applied to glasses; for 
since they are merely supercooled liquids, the value of Q is zero and 
hence dTjdP is infinit. But this is not so contradictory as at first sight 
it may seem; for glasses behave as liquids of exceedingly high viscosity, 
provided always that, conformably with this high degree of viscosity, 
sufficient time be allowed for the motion to take place. 

In conclusion, let us give a brief indication of a connection between 
the relations discussed in this paper and the conception of "molecular 
vibration frequency," a conception which has been very fruitful itx the 
hands of Nernst,1 Lindemann,1 Griineisen,2 and others. I t has been 
established, namely, that a large number of apparently diverse physical 
properties of a substance—melting point, specific heats, coefficients of 
thermal expansion and compressibility, electrical resistance—may be 

1 This work has been published in a series of recent papers which have appeared 
in SUz. Akad. Wiss. Berlin, Ann. Physik, Z. Elektrochem., and Physik. Z. 

3 Ber. physik. Ges., 1911, 426, 591. 
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considered to be functions of a characteristic quantity, the molecular 
"vibration frequency."1 

Expressions containing this quantity have been derived by means of 
which the actually observed variation with temperature of certain of 
the above properties can be reproduced with remarkable accuracy. Now 
the flow pressure 9 at the temperature t is determined by a complicated 
expression, the value of which depends upon t, T1 (the ordinary melting 
point), L (the heat of melting at T1), V (the specific volume at T1) and 
upon the variation of L and V with pressure and temperature; that 
is, for any particular substance, 9 depends upon the above constant 
quantities and upon the specific heats and coefficients of thermal expan
sion and of compressibility; each of these quantities is some function of 
the "vibration frequency," consequently the flow pressure 9 is also a 
function of this same characteristic parameter. 

In view of the state of our knowledge (at the best, very approximate 
only at the present time) of the experimental data and of certain of the 
relations involved, it seems premature to endeavor to deduce a definit 
mathematical relation between 9 and the frequency, or even to deter-
min the exact form of the function. The existence of such a relationship 
accounts simply for the parallelism between the calculated 9 values (of 
Table I) and the mechanical properties of metals brought together in 
Table II ; for all of these quantities are functions of the vibration fre
quency, a fact which indicates that all the mechanical properties of 
metals will be found to be periodic functions of their atomic weights, 
since the vibration frequency itself is doubtless such a periodic function. 
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When hydrogen sulfide gas is passed into a slightly acid solution of 
tellurous acid or the solution of a tellurous salt, a dark colored precipitate 
is formed and continues to separate as long as any tellurium remains in 
the solution. At the moment of formation this precipitate is dark red
dish brown in color, but after a short time it becomes still darker, until 
it is quite black. When dried and heated the substance softens, and on 
cooling forms a gray, somewhat lustrous mass. On being heated still 
higher it gives off sulfur. 

1 For a discussion of the exact significance of this quantity, the reader may be 
referred, in addition to the papers cited above, to recent papers by Einstein in Ann. 
Physik. 


